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Abstract. We use coherent states as a time-dependent variational ansatz for a semiclassical
treatment of the dynamics of anharmonic quantum oscillators. In this approach the square variance
of the Hamiltonian within coherent states is of particular interest. This quantity turns out to have
a natural interpretation with respect to time-dependent solutions of the semiclassical equations of
motion. Moreover, our approach allows for an estimate of the decoherence time of a classical
object due to quantum fluctuations. We illustrate our findings with the example of the Toda chain.

1. Introduction

Coherent states are an important notion in quantum physics, in particular with respect to
semiclassical approximations; for general references see [1–3].

The coherent states of the harmonic oscillator were introduced by Schrödinger [4] and
were re-examined by Glauber [5] in circumstances of quantum optics. For spin systems, spin-
coherent states, i.e. the coherent states ofSU(2), were introduced by Radcliffe [6]. These
two types of coherent states provide an immediate connection to the classical limit of generic
quantum systems and are the most important examples of coherent states in physics.

The connection to the classical limit is obtained by using coherent states as a time-
dependent variational ansatz to investigate the dynamics of a quantum system. Recently, this
approach has been reconsidered by the present authors with respect to interacting spin systems
given by a general Heisenberg model [7]. The central result in that work is the evaluation of
the square variance of the Hamiltonian within coherent states. This quantity turns out to have
a natural interpretation with respect to time-dependent spin structures and also allows for an
estimate of the validity of the variational approach. In the present work we extend these results
to the case of oscillator systems.

In classical nonlinear lattices, as well as in classical spin systems, certain nonlinear
excitations like solitary waves are of particular interest. However, it is an open question
whether such dynamic and spatially localized excitations can also exist in the corresponding
quantum systems. The results of this work provide an estimate for the lifetime of such objects.
We demonstrate this for the example of the Toda chain.

The outline of this paper is as follows: in section 2 we summarize the essential properties
of the coherent states of the harmonic oscillator, and in section 3 we introduce the time-
dependent variational method in quantum mechanics. This method in used in the next section
to treat a generic anharmonic oscillator. In particular, the square variance of the Hamiltonian is
evaluated. This quantity shows very analogous properties to those obtained in [7] for the case
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of quantum spin systems. These findings can be extended to the case of several anharmonically
coupled degrees of freedom; as an example we examine the quantum Toda chain in sections 5
and 6.

2. Coherent states of the harmonic oscillator

The Hamiltonian of the quantum harmonic oscillator is given in standard notation by

Hh = p2

2m
+
mω2

2
q2 = h̄ω

(
a+a +

1

2

)
(1)

with

a = 1√
2

(√
mω

h̄
q +

i√
h̄mω

p

)
a+ = (a)+ (2)

and the well known commutation relations

[p, q] = h̄

i
⇔ [a, a+] = 1. (3)

The quantities
√
h̄/mω and

√
h̄mω arising in the operators (2) are the characteristic length and

momentum, respectively. The system has an equidistant spectrum. Eigenstates are naturally
labelled byn ∈ {0, 1, 2, . . .},

Hh|n〉 = h̄ω(n + 1
2)|n〉. (4)

Coherent states of the harmonic oscillator are eigenstates of the lowering operatora with
complex eigenvaluesα,

a|α〉 = α|α〉. (5)

They can be expressed as

|α〉 = exp(αa+ − α∗a)|0〉 = exp(− 1
2|α|2)

∞∑
n=0

αn√
n!
|n〉. (6)

The parameterα is naturally decomposed into its real and imaginary part as

α = 1√
2

(√
mω

h̄
ξ +

i√
h̄mω

π

)
. (7)

Denoting an expectation value within a coherent state (6) by〈·〉 it holds

〈q〉 = ξ 〈p〉 = π. (8)

Coherent states maintain their shape in the time evolution of the harmonic oscillator,

e−
i
h̄
Hht |α〉 = e−

i
2ωt |αe−iωt 〉 (9)

and the time dependence of the expectation values (8) follows exactly the classical motion
of the harmonic oscillator. This fact justifies the term ‘coherent states’. A further important
property of these objects is their completeness,

1

π

∫
d2α|α〉〈α| = 1 (10)

but it should be mentioned that an arbitrary linear combination of coherent states does not have
property (5). Thus, the coherent states do not form a subspace of the Hilbert space but rather
a submanifold.
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3. The time-dependent variational method

The Schr̈odinger equation of quantum mechanics can be derived by extremizing the action
functional

S =
∫ tf

ti

dt〈ψ |ih̄ d

dt
−H|ψ〉 (11)

with respect to the quantum state|ψ(t)〉 (or 〈ψ(t)|) which is kept fixed at the timesti and
tf [8]. An approximate approach to the dynamics of a quantum system can be performed by
restricting the states in (11) to a certain submanifold of the Hilbert space. In the context of
semiclassical approximations coherent states are a natural choice. For example. for a single
particle moving in a potential the appropriate objects are coherent oscillator states as described
in the foregoing section. Thus, our restricted action functional reads in this case

S̃ =
∫ tf

ti

dt〈α|ih̄ d

dt
−H|α〉 =

∫ tf

ti

dt (π∂t ξ − 〈H〉) (12)

where we have left out a total time derivative in the last integrand. The coherent state|α〉
is employed here as a time-dependent variational ansatz, i.e. its time dependence is assumed
to be given by time-dependent parametersπ(t), ξ(t). This restricted variational principle
can be recognized as the stationary phase condition for the quantum mechanical transition
amplitude between fixed states|α(ti)〉 and |α(tf )〉 when expressed as a path integral over
coherent states [9],

U(ti , tf ) =
∫
Dα exp

(
i

h̄

∫ tf

ti

dt〈α|ih̄ d

dt
−H|α〉

)
. (13)

The variational equations of motion obtained from (12) are

∂t ξ = ∂〈H〉
∂π

∂tπ = −∂〈H〉
∂ξ

(14)

which have the same form as the classical Hamilton equations.
The time-dependent variational ansatz of coherent states becomes exact if the potential in

the Hamiltonian is harmonic. Therefore, our approximate description of the quantum dynamics
should be valid for not too large anharmonicities. This will be examined further in the next
section.

4. The anharmonic oscillator

Let us consider a generic anharmonic quantum oscillator

H = p2

2m
+
mω2

2
q2 +

a

3
q3 +

b

4
q4. (15)

With coherent states as a time-dependent variational ansatz we find for the expectation value
of the energy

〈H〉 = 1

2m

(
π2 +

1

2
h̄mω

)
+
mω2

2

(
ξ2 +

1

2

h̄

mω

)
+
a

3

(
ξ3 +

3

2
ξ
h̄

mω

)
+
b

4

(
ξ4 + 3ξ2 h̄

mω
+

3

4

(
h̄

mω

)2
)

(16)
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which is, of course, constant in time. The variational equations of motion (14) read

∂t ξ = π

m
(17)

∂tπ = −mω2ξ − a
(
ξ2 +

1

2

h̄

mω

)
− b

(
ξ3 +

3

2

h̄

mω
ξ

)
. (18)

It is worthwhile to note that the same equations can be obtained from the Heisenberg equations
of motion for the operatorsq andp,

∂tq = i

h̄
[H, q] ∂tp = i

h̄
[H, p] (19)

when the expectation values of both sides of the equations are taken within the state|α〉 and
the same assumption about its time evolution is made as above. This approach has been used
by Krivoshlykovet al [10].

Equations (16)–(18) reduce to the classical ones in the limit ¯h → 0. Therefore, the
coherent states reproduce the classical limit.

Next let us examine the square variance of the energy, i.e.〈H2〉 − 〈H〉2. This quantity
is non-zero only in the quantum case and, as well as〈H〉, strictly an invariant of the system,
whatever the exact quantum mechanical time evolution of the coherent state is. The square
variance can be written in the form

〈H2〉 − 〈H〉2 = �1 +�2 (20)

with

�1 = 1

2

(
(h̄mω)

(π
m

)2
+
h̄

mω

(
mω2ξ + a

(
ξ2 +

1

2

h̄

mω

)
+ b

(
ξ3 +

3

2

h̄

mω
ξ

))2
)

(21)

�2 = 1

2

(
h̄

mω

)2(
aξ +

3

2
bξ2

)2

+

(
h̄

mω

)3(
a2

12
+ 2b2ξ2 +

5

4
abξ

)
+

(
h̄

mω

)4

b2 3

8
. (22)

The quantity�1 is of leading order ¯h, while �2 contains only higher orders. The squared
expressions in�1 can be recognized as the right-hand sides of (17), (18). Thus, we have

�1 = 1

2

(
(h̄mω)(∂t ξ)

2 +
h̄

mω
(∂tπ)

2

)
. (23)

Within our variational approach, the first order in ¯h of the square variance of the Hamiltonian
is purely due to the time dependence of the state vector. On the other hand, for a quantum state
which has a non-trivial time evolution and is consequently not an eigenstate of the Hamiltonian,
the energy must definitely have a finite uncertainty. Following this observation, the first order
in (20) is not to be considered as an artifact of our variational ansatz, but as a physically relevant
expression for the uncertainty of the energy for a time-dependent solution to the variational
equations of motion (17), (18). Therefore, the variational approach with coherent states does
not only reproduce the classical limit, but is also meaningful for a semiclassical description of
the anharmonic oscillator.

The contributions of higher order summarized in�2 indicate limitations of our variational
ansatz, i.e. they are a measure of decoherence effects due to the quantum mechanical time
evolution. To clarify this, let us consider the temporal autocorrelation function

〈α|e− i
h̄
Ht |α〉 (24)

i.e. the projection of the time-evolved state onto the initial coherent state. The modulus of this
quantity depends on time for two different reasons: firstly the quantum state has a non-trivial
semiclassical time evolution described by equations (17), (18). In real space the coherent
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state is represented by a Gaussian. Within oursemiclassicaldescription of the dynamics the
wavefunction remains a Gaussian, but its centre is moving. Therefore the overlap of the initial
state and the time-evolved state is reduced. Secondly, defects of our variational approach,
which lead to decoherence effects, also diminish the scalar product (24). Such quantum
fluctuations affect the shape of the wavefunction which will not remain strictly of the Gaussian
form under theexactquantum mechanical time evolution in the anharmonic potential. The
latter effects become significant on a time scale given by the uncertainty relation, where the
relevant contribution to the uncertainty of the energy is given by�2,√

�21t >
h̄

2
. (25)

Alternatively one may consider the following correlation amplitude

C(t) := 〈α(t)|e− i
h̄
Ht |α〉 (26)

with α(t) given by time-dependent functionsξ(t) andπ(t) which are solutions of (17), (18)
with the initial conditionα(0) = α. This quantity is the projection of the coherent state evolved
under the exact quantum mechanical time evolution onto the state given by the semiclassical
time evolution. If the potential in the Hamiltonian is purely harmonic we have|C(t)| = 1 and
�2 vanishes. In this case our variational ansatz of coherent states is of course exact and no
decoherence effects occur. This observation also supports our interpretation of the different
contributions to〈H2〉 − 〈H〉2.

Thus deviations of the modulus of (26) from unity measure decoherence effects due to the
exact quantum mechanical time evolution under the anharmonic Hamiltonian. These effects
manifest themselves in the additional contribution�2 to the square variance of the energy.
The leading order�1 can be interpreted purely as an effect of the semiclassical time evolution
which does not incorporate decoherence effects since it assumes the state vector to remain
within the submanifold of coherent states throughout the time evolution.

If one inserts a generic time-dependent solutionξ(t), π(t) of the semiclassical equations
of motion (17), (18) in�1 and�2, these quantities will not be constant in time separately
(although their sum�1+�2 is strictly constant in the exact quantum mechanical time evolution).
However, as an approximation, one may use in (25) the value of�2 given by the initial
value of ξ . This is justified if the semiclassical motion of the particle is not too fast, i.e.
the semiclassical momentumπ is not too large. In particular, if the initial coherent state is
chosen to haveπ(0) = 0 and a certain value ofξ , the particle will move in the semiclassical
description to smallerξ(t) because of the attractive potential. In this case the�2 evaluated
for the initial valueξ(0) is an upper bound for�2 evaluated for later times, since this quantity
grows with increasingξ . Conversely, quantum fluctuations summarized in the quantity�2

become larger if theξ approaches the turning point of the semiclassical motion governed by
the equations (17), (18). This feature is well known from the usual WKB-approximation and
is therefore consistent with the interpretation of�2 given above. Moreover, in the following
we will also examine other systems which exhibit stationary semiclassical dynamics with�1

and�2 being constant in time separately.
Another example where the validity of our considerations can be checked explicitly is

the free particle withH = p2/2m. Let the particle be initially in a coherent state with the
wavefunction

〈q|α〉 =
(mω
πh̄

)1
4

exp

(
−mω

2h̄
(q − ξ)2 +

i

h̄
π

(
q − ξ

2

))
. (27)

The quantityω is not a frequency here but a parameter which determines the localization of the
particle in real and momentum space around the expectation values (8). The square variance
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of the Hamiltonian reads the same as in (20) with

�1 = 1
2h̄mω

(π
m

)2
�2 = 1

8(h̄ω)
2. (28)

Since the expectation value of the momentum is constant for such a translationally invariant
system,�1 and�2 are conserved separately. The time-evolved wavefunction can be readily
obtained as

〈q|e− i
h̄
Ht |α〉 =

(
mω/πh̄

1 + (ωt)2

)1
4

exp

(
−mω

2h̄

(
q − ξ − π

m
t
)2

1 + (ωt)2

)
eiϕ(q,t) (29)

with a real phaseϕ(q, t). Thus, the width of the wavefunction increases, i.e. its spatially
localized structure is smeared out, on a timescale of1t = 1/ω, which is consistent with
the estimate given by (25). This result also strongly supports the above interpretation of the
quantities�1 and�2.

In the next section we will make further use of the estimate of the decoherence time1t

provided by (25).
The findings described above are completely analogous to the results obtained recently on

interacting spin systems with spin-coherent states as a time-dependent variational ansatz [7].
The particular case corresponding to the harmonic limit of an oscillator is given here by a
paramagnet, where all spins are independent of each other and coupled only to a static magnetic
field. In this case all spins perform a Larmor precession around the field axis, and this motion is
described exactly by spin-coherent states. A further common aspect of the harmonic oscillator
and a spin in a magnetic field is the equidistance of the spectra of both systems.

5. Anharmonic lattices: the Toda chain

It is an obvious idea to generalize the results of the foregoing section to systems with many
anharmonically coupled degrees of freedom. Let us consider a HamiltonianH = T + V with

T =
N−1∑
n=0

p2
n

2m
V =

N−1∑
n=0

V (qn − qn−1) (30)

whereN is the number of degrees of freedom and periodic boundary conditions are imposed.
The two-particle potentialV (x) contains, in general, anharmonic terms. To give a semiclassical
description of the dynamics, one may proceed similarly as for the single anharmonic oscillator,
but for a general potentialV (x) such an approach leads to quite complicated expressions, in
particular for the square variance of the energy. Fortunately, a special case exists where the
results can be given in a concise form. This case is the Toda chain, which is well known in the
theory of nonlinear lattices [11],

V (x) = η

γ 2
(e−γ x + γ x − 1) = mω2e−γ λ

γ 2
(e−γ x + γ x − 1). (31)

The potentialV contains the two parametersη andγ ; for further convenience we have rewritten
η in terms of the new parametersω andλ to be determined below. In the limitγ → 0 the system
is just the harmonic chain having independent phonon modes labelled by the wavenumberk

with the acoustic phonon dispersionω(k) = 2ω sin(|k|/2). The usual phonon operators read

bk = 1√
2N

N−1∑
n=0

[(√
mω(k)

h̄
qn +

i√
h̄mω(k)

pn

)
e−ikn

]
b+
k = (bk)+. (32)
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An appropriate variational ansatz is given by coherent phonon states,

|β〉 =
⊗
k∈1.BZ

|βk〉 (33)

where the coherent state of the modek fulfils bk|βk〉 = βk|βk〉 and the tensor product runs over
the first Brillouin zone. Again we denote expectation values within (33) by〈·〉. The parameters
βk are related to the local expectation values〈qn〉 = ξn, 〈pn〉 = πn by

βk = 1√
2N

N−1∑
n=0

[(√
mω(k)

h̄
ξn +

i√
h̄mω(k)

πn

)
e−ikn

]
. (34)

Such an approach to the dynamics of the quantum Toda chain has been performed by Dancz
and Rice [12], and by G̈ohmann and Mertens [13]. Here we add instructive results on the
square variance of the Hamiltonian.

The expectation value of the Hamiltonian reads

〈H〉 =
N−1∑
n=0

π2
n

2m
+
N−1∑
n=0

mω2

γ 2
e−γ (λ−

γ

210)(e−γ (ξn−ξn−1) − 1) (35)

where10 is a correlation in the phononic vacuum|0〉. More generally, one has

1p := 〈0|(qn+p − qn+p−1)(qn − qn−1)|0〉

= h̄

mω

1

2N

− sin
(
π
N

)
sin
(

2p+1
2N π

)
sin
(

2p−1
2N π

) N→∞
−→ −1

(4p2 − 1)

2

π

h̄

mω
(36)

where the following relations hold:

N−1∑
p=0

1p = 0
N−1∑
p=0

(1p)
2 = 1

2

(
h̄

mω

)2

. (37)

The expectation value (35) has the same form as the classical Toda Hamiltonian up to a
renormalization of the parameterλ. The equations of motion are obtained analogously as
in (14) and therefore also have the same functional form as the classical ones. It was shown
in [13] that this is a peculiarity of the Toda potential.

From the equations of motion one obtains∑
k

[h̄2(∂tβk)(∂tβ
∗
k )]

=
∑
n,n′

[
πn

m
(m2ω21n−n′)

πn′

m
+

(
mω2

γ
e−γ (λ−

γ

210)−γ (ξn−ξn−1)

)
(1n−n′)

×
(
mω2

γ
e−γ (λ−

γ

210)−γ (ξn′−ξn′−1)

)]
. (38)

Note that the left-hand side of (38) is of leading order ¯h, since the parametersβk contains a
factor 1/

√
h̄ (cf (34)).

The square variance of the Hamiltonian reads

〈H2〉 − 〈H〉2 = R1 +R2 +R3 (39)

with

R1 = 〈T 2〉 − 〈T 〉2 =
∑
n,n′

[πn
m
(m2ω21n−n′)

πn′

m

]
+
N

4
(h̄ω)2 (40)
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R2 = 〈V2〉 − 〈V〉2 =
∑
n,n′

[(
mω2

γ 2
e−γ (λ−

γ

210)−γ (ξn−ξn−1)

)
(eγ

21n−n′ − 1)

×
(
mω2

γ 2
e−γ (λ−

γ

210)−γ (ξn′−ξn′−1)

)]
(41)

R3 = 〈T V + VT 〉 − 2〈T 〉〈V〉 = −(h̄ω)2 1
2

∑
n

[e−γ (λ−
γ

210)−γ (ξn−ξn−1)]. (42)

These expressions can be derived by similar methods as described in [13]. The technical
advantage of the Toda potential lies in the fact that the contributionR2 has a comparatively
simple form and can be obtained via the Baker–Campbell–Hausdorff identity.

Expanding the factor(exp(γ 21n−n′)− 1) in (41) and using equations (38), (37) one can
rewrite these formulae as

〈H2〉 − 〈H〉2 =
∞∑
µ=1

�µ (43)

with

�1 =
∑
k

[h̄2(∂tβk)(∂tβ
∗
k )] (44)

�2 = 1

2

∑
n,n′

[(
mω2

γ 2
(e−γ (λ−

γ

210)−γ (ξn−ξn−1) − 1)

)
(γ 21n−n′)2

×
(
mω2

γ 2
(e−γ (λ−

γ

210)−γ (ξn′−ξn′−1) − 1)

)]
(45)

and forµ > 2

�µ =
∑
n,n′

[(
mω2

γ 2
e−γ (λ−

γ

210)−γ (ξn−ξn−1)

)
1

µ!
(γ 21n−n′)µ ·

(
mω2

γ 2
e−γ (λ−

γ

210)−γ (ξn′−ξn′−1)

)]
.

(46)

Each term�µ is of leading order ¯hµ because1n−n′ ∝ h̄. As seen from (44) the lowest order
in h̄ in the square variance of the Hamiltonian is purely given by the time dependence of the
semiclassical variables. Therefore, the same conclusions apply as in the foregoing section.
Note also that again in the harmonic limitγ → 0 all�µ for µ > 1 vanish and the variational
ansatz is exact.

We have demonstrated the result given in equations (43), (44) for the Toda chain as an
example, mostly to reduce technical difficulties. In fact, from experience with an analogous
semiclassical treatment of quite general Heisenberg spin models in arbitrary spatial dimension
[7], these findings are expected to hold for more general lattice models.

6. Decoherence effects to semiclassical solitary waves in the Toda chain

In the last decades an immense literature has emerged on solitons in solid state physics. In those
publications, the solid is usually modelled (at least effectively) as a classical system, while in
fact it generally carries quantum degrees of freedom. We will see below how our approach
can be used to make contact between the classical and the quantum mechanical description.
In particular, the validity of theories based on classical solitary excitations can be estimated.

The one-dimensional Toda lattice is an integrable system in the classical [11,14] as well as
in the quantum mechanical case [15]. Moreover, a formal identification can be made between
the dispersion law of the one-soliton solution of the classical system and a certain branch
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of the excitation system of the quantum model, which is obtained by the Bethe ansatz [16].
Both dispersions are identical in form, and in this sense the quantum analogue of a classical
soliton may be viewed as a certain stationary state of the quantum system; see also [17] for a
discussion of that issue in a semiclassical context. Nevertheless, such an eigenstate obtained
from the Bethe ansatz is not a dynamical object and naturally translationally symmetric, i.e.
not localized like a classical soliton. Moreover, such an explicit identification is in general only
possible if the quantum and the classical system are both integrable. Therefore, the question
arises whether quantum states exist which have the essential properties of classical solitary
waves, which are required in many classical descriptions of phenomena like energy transport
etc. As such a quantum state is not translationally symmetric, it cannot be expected to be an
eigenstate of the quantum system. Moreover, its time evolution is in general not fully coherent,
but decoherence effects due to quantum fluctuations cause a finite lifetime of such a localized
state. In the following we give an estimate for this lifetime of semiclassical solitary waves
built up from coherent states in the quantum Toda chain. Let us first consider the variational
ground state of the Toda chain withξn = πn = 0 for all n. Here we clearly have�1 = 0, and
for �2 we find

�2 = N

4
(h̄ω)2(1− e−γ (λ−

γ

210))2 (47)

which is also zero forλ = (γ /2)10. With respect to the parameterη entering the potential (31)
this means

mω2 exp

(
−γ

2

2

h̄

mω

1

N

sin(π/N)

1− cos(π/N)

)
= η. (48)

This relation determines the frequencyωwhich enters the variational ansatz (33) via the phonon
dispersionω(k). One obviously always has a non-negative solutionω for any non-negative
η. Note that with this choice forω the quantum corrections in the exponential factor in the
variational expression (35) and also in the equations of motion cancel with the parameterλ,
but are of course present compared with the original Hamiltonian. However, the higher order
terms�µ with µ > 2 are in general non-zero for this classical ground state solution. Thus,
our variational ground state approximates the exact ground state within the first two orders of
h̄. To account for higher corrections one has to implement a more complicated state than (33).
Therefore, in the spirit of the WKB approximation scheme we can be confident in giving a
valid description of the quantum system within the first two orders of ¯h.

Let us now turn to a solitary solution to the variational equations of motion (which are
practically the same as the classical equations). As mentioned above, such solutions do not
correspond to (approximate) eigenstates of the system like the variational ground state, but
suffer decoherence effects in their time evolution. Nonlinear excitations in the classical Toda
chain with periodic boundary conditions are so-called cnoidal waves which can be expressed
in terms of Jacobi elliptic functions. As a limiting case, a pulse soliton arises which is given
by elementary expressions [11],

πn = ±νm
γ
(tanh(κ(n− 1)± νt)− tanh(κn± νt)) (49)

e−γ (ξn+1−ξn) − 1= sinh2 κ

cosh2(κn± νt) (50)

with the soliton parameterκ, which is the inverse soliton width, andν = ω sinhκ. Although
this solution of the variational equations of motion is, strictly speaking, not compatible with
periodic boundary conditions, it is an excellent numerical approximation for the cnoidal waves
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for large wavelength and system size. For simplicity, we shall concentrate on the above
expressions in the following. With this solution the quantities�µ can be written as

�µ = (h̄ω)2
(
mω2/γ 2

h̄ω

)2−µ
Qµ(κ) (51)

where theQµ depend only onκ. In particular, theQµ (and therefore the�µ) are time
independent since our soliton solution describes a stationary movement, where a translation
in time is equivalent to a translation in space. Therefore, the time dependence drops out when
the summations over the system in equations (44)–(46) are performed. The dimensionless
quantity(mω2/γ 2)/(h̄ω) is the ratio of the energy scales of the nonlinear interaction and of
the linear phonon excitations. In a semiclassical regime this quotient is large and suppresses
all orders�µ with µ > 2 (which are not further considered here, cf above). Forµ = 2 we
have for an infinite system

Q2(κ) = 4 sinh4 κ

π2

∞∑
l=−∞

1

(4l2 − 1)2

[ ∞∑
n=−∞

1

cosh2(κn) cosh2(κ(n− l))

]
. (52)

The above summations are non-elementary. The largest contribution stems from the summand
with l = 0. Replacing the remaining sum overn by an integral, one concludes that this quantity
should scale approximately like 1/κ. Indeed, a numerical evaluation of the full double sum
for κ ∈]0, 0.5] shows that a very accurate value for this expression is(4/3κ); deviations from
this occur only for largeκ and are of order 10−5. Therefore, we may write in a very good
approximation

�2 = (h̄ω)2 4 sinh4 κ

π2

4

3κ
(53)

and the estimate of the decoherence time according to (25) is

1t > 1

ω

π
√

3

8

√
κ

sinh2 κ
. (54)

Multiplying with the soliton velocityc = ν/κ one finds for the decoherence length1l = c1t
for smallκ

1l > π
√

3

8
κ−3/2. (55)

Remarkably, no system parameter or Planck’s constant itself, but only the soliton width
enters (55). The decoherence length is large for smallκ, i.e. broad solitons. For instance,
a soliton with a width of 100 lattice units may travel (at least) about ten times this distance
until decoherence effects become significant. With respect to the classical picture of solitons,
this appears rather restrictive. On the other hand, the relation (55) provides only a lower
bound for the coherence length; e.g. in the classical limit ¯h→ 0 all decoherence effects vanish
and the decoherence length becomes infinite. However, for not too large values of the ratio
(mω2/γ 2)/(h̄ω) the decoherence length should be assumed to be of the order of the right-hand
side of (55), at least as a ‘conservative’ estimate.

7. Conclusions

In this work we have examined coherent states as a time-dependent variational ansatz for
a semiclassical description of anharmonic oscillators. In particular, the square variance of
the Hamiltonian〈H2〉 − 〈H〉2 within coherent states is considered. For a single anharmonic
oscillator, the first order in ¯h of this quantity turns out to be purely given by the variational
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time dependence of the quantum state, cf equations (20)–(23). Therefore, this contribution
has a natural interpretation, which can be confirmed rigorously in the cases of the harmonic
oscillator and the free particle. Compared with recent results on spin-coherent states [7] this
appears to be a general property of coherent states with respect to generic quantum systems.
The remaining contributions to〈H2〉−〈H〉2 can be used to estimate decoherence effects which
arise from quantum fluctuations. In the foregoing section we illustrated this by the example
of the Toda chain. We have chosen this system because it provides comparatively simple
expressions for the quantities considered here, and explicit solitary solutions of the classical
equations are available. In fact, we expect our approach to be useful for much more general
anharmonic lattices.
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